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A useful approach for long range computation of the Helmholtz equation in a
waveguide is to re-formulate it as the operator differential Riccati equation for the
Dirichlet-to-Neumann map. For waveguides with slow range dependence, the piece-
wise range-independent approximation is used to derive a second-order range step-
ping method for this one-way re-formulation. The range marching formulas are exact
for each range-independent piece and alarge range stepis possible if the range depen-
dence is gradual. Based on a fourth-order conservative exponential method for linear
evolution equations, a fourth-order method that admits even larger range steps is de-
veloped for the one-way re-formulation. Numerical examples are used to demonstrate
the improved accuracy of the fourth-order method.1999 Academic Press

1. INTRODUCTION

For acoustic, electro-magnetic, and seismic wave propagation problems of practic
terest, itis often necessary to solve the governing equation in a domain that has length
much larger than the typical wavelength. Very often, boundaries and different medium
erties lead the waves to propagate in some preferred direction. The length scale alot
waveguide is typically very large. The transverse length scale is much smaller, but still n
larger than the characteristic wavelength. For example, the ocean surface and the rel:
slow speed of sound in water (compared with the seabed) effectively force the sound v
to propagate in horizontal directions. Low-frequency sound waves in the ocean could t
hundreds and even thousands of kilometers in the horizontal (i.e., range) direction.

Standard numerical techniques such as the finite difference and finite element me
lead to a system of equations with a very large number of unknowns and are not very pra
for these large-scale problems. The boundary integral equation method [7, 27] can be
useful when it is applicable, but it is restricted to cases in which the medium prope
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are constants. Fortunately, for many long range wave propagation problems, the mec
properties have very gradual variations in the main propagation direction. The purpos
this paper is to develop an efficient numerical method for Helmholtz waveguides by tak
advantage of this feature.

Consider the simple model of a 2-dimensional Helmholtz equation

Uxx 4 Uzz + K2(X, Z)U = 0 (1)

in the strip O< z < 1, wherex is the range variable (for the main propagation direction)
Homogeneous ang-independent boundary conditions are assumezi=a0 andz=1.
Furthermore, the wavenumberis x-independent foix <0 andx > L, for someL. A
radiation condition is imposed at= L so that only waves propagating towaréso are
allowed forx > L. Our problem is characterized by the existence of three distinct leng
scales

1
- K1k L.
K

Namely, the typical wavelengt®(1/«) is much smaller than the transverse length scal
(normalized as 1), which is still much smaller than the range distand®e also assume
that the dependence ofon the range variabbe is gradual in the sense that the variation of
K« over a typical wavelength is small compared witfiself.

Exact one-way re-formulations [9, 21] turn the Helmholtz equation boundary value prc
lem into “initial” value problems with the range variablgalong the waveguide) acting as
the usual “time” variable. A simple one-way re-formulation is based on the Dirichlet-ts
Neumann (DtN) map. Letbe an arbitrary solution of the Helmholtz equation satisfying the
boundary conditions &= 0 andz= 1, and the radiation condition &t= L. The DtN op-
eratorQ(x) mapsu (at a fixedx, as a function of) to its x derivative. We have, = Q(x)u
and

?TS =—[02+«*x,2] - Q% 2)

A numerical implementation for such a one-way re-formulation requires relatively litt
computer memory (since it is independent.9f Meanwhile, the total computation time is
linearly proportional td_. For long range waveguide problems whérg> 1, the one-way
re-formulations are particularly useful.

Notice that the DtN map is often associated with the exact boundary condition at
artificial boundary introduced to truncate the original unbounded domain [12, 13, 22,
23]. As a special case, the radiation condition here can be giver=dt (sincex is x-
independent fox > L) asuy = Q(L)u, where Q(L) =i/92 + «2(L, z) for a properly
defined square root operator. In this paper, the DtN map is not just used for an artifi
boundary condition, itis defined at different valuesafind used as the main tool for solving
the Helmholtz equation.

The main objective of this paper is to develop numerical methods for discretizing t
Riccati equation (2), such that a large step size can be used whrrl#mendence of is
weak. In a step where is x-independent, our methods reproduce the exact relationshi
between the operators at the two end points of the step. For the ggradgpendent case,
a second-order method is derived based on approximatingach step by its value at the
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midpoint (still a function ofz). We also develop a fourth-order “large range step” methc
based on a fourth-order method for linear evolution equations.

In Section 2, we present the necessary background of exact one-way re-formulatio
the Helmholtz equation and compare them with the related approximate one-way Helml
equation. A second-order method is derived in Section 3. The operator formulas of Sect
are further discretized with two methods in Section 4. The full matrix approach approxim:
the operators by matrices directly based on a fourth-order finite difference method fol
z variable. A more efficient approach is to use the truncated local eigenfunction expan
where the operators are represented by matrices of much smaller sizes. A fourth-order
range step method is presented in Section 5. Numerical examples are given in Sectio
illustrate the capacity of the methods. Finally, we end this paper with some conclusior
Section 7.

2. ONE-WAY RE-FORMULATIONS

Fishman [9] first developed a one-way re-formulation based on wave-field decompos
and the scattering operators. The wave field is decomposed=as™ +u™ and the
conditionuy =iB(x)[u™" —u]is required, wherB(x) = /92 + «2(x, z) is the square
root operator which can be defined based on the eigenvalues and eigenfunctions
transverse operata? + «2 (see, for example, [21]). The one-way re-formulation base
on the DtN map is simpler [10, 11, 21, 14]. Substituting= Q(x)u into the Helmholtz
equation, we have

d—Q+Q2+822+/<2(x,z) u=0.

dx
Since the above is true for any solution of the Helmholtz equation (satisfying the bounc
conditions az = 0 andz =1, and the radiation condition at= L), we obtain Eq. (2) foQ.

Numerical computation for the above re-formulation was reported in [21]. This |

formulation is an example of the invariant imbedding or Riccati method for two po
boundary value problems of ordinary differential equations [2], with the only differen
being that the matrices are replaced by operators. The Riccati equatighgbould be
solved for decreasing with an initial condition that matches the exact radiation conditic
at+o0. Sincex (X, z) does not depend oafor x > L, the initial condition ofQ can be given
atx=L asQ(L) =i+/32+«?(L, ). The reflection operator at=0 can be constructed
from Q(0), leading to the solution of back-scattered waves for given incident waves fr
—o0. To find the wave field fok > 0, a naive approach is to use the “evolution” equatio
ux = Q(X)u in a second sweep. This is not practical sifigenust be remembered for all
X. For stability reasons, (2) cannot be solved for increasirig reproduce the solution
obtained in the first sweep. This difficulty can be avoided by introducing the fundame
solution operatol satisfyingY (x)u(x, z) =u(L, z) and

dy
—=-YQ 3

5 = Ye 3)
The modified first sweep is now to solg@andY together fromx = L to x = 0. The initial
condition atx=_L is Y (L) = |, wherel is the identity operator. WheYi(0) is calculated,
the solution ax = L can be generated by a simple multiplication with the “starting fielc
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u(0, 2), namely,
u(L, 2) = Y(O)u(o, 2).

The approach can be further modified to find the solutions at other selected range locat
[21]. This re-formulation produces the exact solution of the Helmholtz equation and can
used for arbitrary range dependence. The numerical procedure reGimésoperations
for each range step, whereis the number of points used to discretizelt is possible
to speed it up toO(m®) operations, wheren is the number of modes used in a local
eigenfunction expansion. Usuallyy is slightly larger than the number of propagating
modes in the waveguide. When a typical finite difference method is used for discretizin
we haven ~ 10m.

In [21], for the step fromx; to Xo = X — h, the numerical scheme replack®/dx at the
midpoint Xy 2 = (Xo + X1)/2 by (Q1 — Qo)/ h and approximates the Riccati equation for
Xp < X < X1 by

w = —% (QoQ1 + Q1Qo) — [82 + k(X12, 2], (4)
whereQ; ~ Q(x;). Thisis a second-order method and a small range step @z&cessary
even in a range-independent region. In this paper, we develop large range step methoc
the DtN re-formulation to take advantage of the weak range dependence of the wavegt
The method developed in Section 3 also approximatesz) on the interval(xg, X;) by

Kk (X172, 2), but it finds the exact solution of the equation

(17(3 = —Q% — [82 + k2%(X12, 2)].

If ¥ happens to b&-independent on the intervélg, X;1), this method produces no error in
this step. Therefore, whenvaries withx slowly, we can use a step size larger than tha
used with the method based on (4), for a given required accuracy. The method develc
in Section 5 allows us to use even larger range steps. It is a fourth-order method for
generalk-dependent and it still gives exact solutions whenis x-independent.

Before we proceed to develop numerical methods for the operator equations (2)
(3), it is worthwhile to compare our approach with the widely uapdroximateone-way
methods. For weakly range-dependent waveguides, under the assumption that the wave
is dominated by the outgoing component (towatgs), the Helmholtz equation is often
approximated by the following one-way Helmholtz equation,

Ux R i4/02 4 k2(X, Z)u. (5)

Alarge class of “parabolic” equations [17, 16, 18, 26, 28, 3, 5, 6] are further approximatic
of (5). The exact evolution equation shouldipe= Q(x)u, whereQ satisfies the Riccati
equation (2). Thus, Eq. (5) is the result@fx) ~i /92 + k2(x, z), say obtained from (2)
by ignoring the termd Q/dx. Whenk is x-independent, (5) is truly valid. However, this
range-independent problem is not difficult, since it can be simply solved by the metf
of separation of variables. When (5) is used for weakly range-dependent problems, it
ten gives useful approximations to the outgoing component of the wave field. The m
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advantage of (5) and its further approximations is that they can be solved efficiently
marching forward irk. However, when the one-way Helmholtz equation is used in a lol
range calculation, the accuracy is questionable, even when the range dependence is
On the contrary, the exact one-way re-formulations give exact solutions of the Helmh
equation (including the back-scattered waves) in principle. Approximations are introdu
only when the operator equations (say, (2) and (3)JdandY) are solved numerically.
Despite the differences between theactone-way re-formulations and tlag@proximate

one-way Helmholtz equation, there is a common desire to use a large range step size
they are solved numerically. For the one-way Helmholtz equation, the original apprc
[5] is based on the Crank—Nicolson method and a rational approximation of the sq
root operator. This second-order method requires a small range step size even for r.
independent problems. On the other hand, consider a typical step<frtorx, = Xo + h;
the solution of the one-way Helmholtz equation can be approximated by

U(Xq, 2) &~ @MV T2 02Dy (x 7). (6)

This formula is exact ik (X, z) is x-independent on the intervély, X;). Therefore, a large
range step can be used when the range dependence is weak. One possible approach f
uating (6) is to use the eigenvalues and eigenfunctions of the opéfatorz(xl/z, z). The
split-step Pad'method [6] approximates efip /92 + x2(X1/2, 2)} directly by an operator
rational function and it is much more efficient. An alternative method based on higher ol
generalizations of the Crank—Nicolson method is presented in [19]. Both these metl
allow a much larger range step in a weakly range-dependent region compared witt
method in [5].

3. PIECEWISE EXACT SOLUTIONS

In this section, we develop a second-order method that approximates the wavec
by pieces of range-independent segments and uses the exact solutions for each pie
marchingQ andY in the range. This is similar to the coupled mode method [24, 25,
8, 1], but the one-way re-formulation allows us to avoid the large linear system (for
coefficients of the modes in all pieces) appearing in the coupled mode method.

On the intervalxo, X1), the Riccati equation fo® is approximated by

Q=-Q*— [322 + k2(Xq2, 2], @
wherexy, = Xo + h/2= (X0 + X1)/2. For a given initial conditiorQ; ~ Q(x1), the exact
solution of (7) is used to obtaiQy~ Q(Xo). For this purpose, we explore the relationshi
with the Helmholtz equation and consider the associated equation

Uxx 4 Uzz + k2(X1/2, 22U = 0 (8)

on (Xp, X1). Since the intervalxo, X1) corresponds to a range-independent segment, we
decompose the wave field as right- and left-going waves

u=u® +u,
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whereu™ andu™ satisfy
Ul = iByu, Ul = —iByp u,
whereBy 2 = /32 + k2(x1/2, 2). Let Ry be defined by
U (xa, 2 = Riu™ (x4, 2);
it is easy to obtain fronu, (X1, 2) = Q1u(Xy1, ) and the above relationship that
Ri =[iB12 + Q1] [iB1/2 — Qul. )
Similarly, we defineRy by
U (x0,2) = Rou™ (%0, 2)
and obtain
Qo = iBus2[l — Ro][l + Ro] ™. (10)
Compare the definitions d?; and Ry and notice that
U (x1,2) = €MBr2uM(x,2), U (xq, 2) = e7"Br2u) (%0, 2);
we obtain
Ry = Bz R, NBuz, (11)
The formulas (9), (11), and (10) reveal the exact relationship bet@gamdQ; for Eq. (7).
The fundamental solution operatsatisfying (3) is introduced to mag0, z) tou(L, 2).
The initial condition isY(L) = 1. On the interval(xg, X;), assuming that the Helmholtz

equation is approximated by (8), we obtaifxg, z) = (I + Ro)u™ (xo, z) and

U(X1,2) = (I + ROUP (x4, 2) = (I + Ry)EMB2u® (%, 2)
= (I + RDEM®2(1 + Ro)~tu(xo, 2).
Therefore, we have
Yo = Ya(l + Ry)€e"Bvz(l 4+ Ry)~L. (12)
Notice thatR, andR; used above do not give a good definition for the reflection operatc
On the intervalxg, X1), we usex (X1/2, Z) to approximate (x, z) and decompose the wave
field through the square root opera®, = /92 + k?(Xy/2, 2). It is appropriate to define

the reflection operator &>, sayRy», by

U (X2, 2) = Ryu™ (x2, 2).
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On the other hand, the grid pointg, X1, Xz, . . . correspond to discontinuities of the piece:
wise range-independent medium. Whik is defined based on the wave-field decompc
sition in (Xp, X1), we must also have an operator, sl%y defined based on a wave-field
decomposition inxy, X2). Although the total wave field and itsx derivative are ensured
to be continuous at;, usually,R; # R;. Similarly, the operatoR, defined onx_1, Xo) is
not the same aR,.

Since the DtN map is closely related to the reflection operators, it is possible to
the reflection (and transmission) operators in the one-way re-formulation. For a piece
range-independent medium, the marching formulas for the scattering operators are
in [9]. For the case considered here, the desired formulas are for théRaiR;), or
(Ro, Ry), or (Ry/2, Rsj2). These formulas must involve the square root operator at tv
nearby range-independent segments and the continuityotiuy at an interface must be
explicitly imposed. In the DtN formulation above, the continuity condition is implicit i
the requirement tha; obtained from the previous calculation(ixy, x;) be the sam&);
used to calculat€q in (Xg, X1).

A slightly different approach is to approximate the Helmholtz waveguide by piecew
range-independent segments using the medium valugsat x,, etc., and derive operator
relationships also at these points. More precisely, we consider

Uxx + Uzz + (X}, U =0
for (Xj—1/2, Xj+1/2), Wherex;+1/» = (Xj + Xj+1)/2. Exact solutions in each segment can b
written down and continuity conditions &f. 1/, are used to match the solutions.
We start with a wave-field decomposition= u™ +u=), whereu™ andu~’ satisfy

ul” =iBju™,  uf) =-iBju”

onthe intervalx;_1/2, Xj+1/2), whereB; = /92 + k2(X;, 2). Atthe pointx;, we define the
reflection operatoR; by

u(xj, 2 = Rju™M(x;, 2).
For j =0, we write down the solution and itsderivative atx;, as

U(X1/2, 2) = €MB/20H) (%0, 2) + €7 MB/24) (%0, 2)

Ux(X1/2, 2) = i Bo[€"B/2U (%0, 2) — &7 "B/2u) (%o, 2)].
For j =1, we use the solution ofxy/2, X3/2) and obtain

U(xaj2, 2) = & "B2uD (xg, 2) + €U (x4, 2)

Ux(Xy/2, 2) = i By[e "BY2UD (xq, 2) — MBY2U) (xq, 2)].

From the continuity ofu anduy at x;,> and the definitions oR, and Ry, we obtain the
formulas

Ry = €"Bo/2(| + T)=(1 — T)enB/2, (13)
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where
T =By 'Bu(l = Xo)(I + X~ (14)
X, = ehBi/2R, ghBi/2, (15)
Equation (13) has the more convenient form
Xo=€"Bo(l + T)71(1 — T)ePe, (16)

whereX, = €"B/2 R, &"B/2 The reflection operators are related to the DtN maps throuc
the formula

iBj(l — R)(I + R)™* = Q;. (17)

This can be easily derived by writing dowm (X, z) = Q;u(x;, z) through the wave-field
decomposition.

Compared with the approach based on the DtN map ((9), (11), and (10)), the methoc
marching the reflection operator, based on Egs. (14) and (16), is slightly more expens
since an extra term (Bo‘lBl is involved in each step.

4. LOCAL EIGENFUNCTION EXPANSION

When the DtIN maQ and the fundamental solution operatdare solved fromx =L
to x =0, formulas (9), (11), (10), and (12) are used in the step oo x,. For a general
step fromxy. 1 to Xk, wherek is some integer, the marching formulas follow from (9), (11),
(10), and (12) with a trivial index substitution. In this section, we consider its numeric
implementation.

A direct approach is to approximate the operators by matrices. Let us consider the
lowing boundary conditions for the Helmholtz waveguide,

u(x,0) =0, u;(x,1) =0.

If we discretize thez axis byz; = jé, for j=1,2,...,nand§=1/(n+ %), we could
approximate the second-derivative operatpby the following matriceD, and D4 [21],
for second and fourth orders of accuracy, respectively:

-2 1 10 1

D= < 1 , Dy, =12 1 Do.
t.o=2 1 .10 1
1 -1 1 11

To implement formulas (9), (11), (10), and (12), it is necessary to find the eigenval
decomposition for the matrix that approximatést- «2(xy 2, ). Namely,

D4+ . = VAVT, (18)

SN
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wherex; =« (X1/2, Z;), V is the orthogonal matrix of the eigenvectors, anis the diagonal
matrix of the eigenvalues. Aftev and A are obtained, the following steps are used t
calculateQg andYy from Q; andYs:

S=VTQuV,

PL=(vVA+9 VA -9),
Py = e"VApehva,

W = (I — Po)(I + Pp)™ %,
Qo =iVV/AWVT,
Yo = Y1V (I + P)ENYA(l 4+ Py)~IVT.

SinceA is a diagonal matrix, the matriceéA andeé"v2 are also diagonal matrices which
can be easily calculated. Clear(n®) operations are needed in each range marching st

Similar to the so-called coupled mode method [24, 25, 4, 8, 1], where the solutior
the Helmholtz equation is expanded in a truncated serigsdgfpendent eigenfunctions of
the operaton? + «2(x, 2), the above algorithm for marching the operat@sndY can
be much more efficient, if we consider only the finsteigenvalues and eigenfunctions of
82 4+ k2(x, 2). This approach is very effective, because the Helmholtz waveguide has
a finite number of propagating modes (corresponding to positive eigenval@ési-of?)
and all the remaining eigenfunctions correspond to evanescent modes that decay exp
tially with increasingx for range-independent waveguides. For weakly range-depend
waveguides, the coefficients of the evanescent modes are typically very small. Usua
is sufficient to choosen slightly lager than the number of propagating modes (i.e., positi
eigenvalues 092 + «2).

Let n be the number of points for discretizirgas before andn be the number of
retained modes in the truncated local eigenfunction expansion approach; the first st
our method is to calculate thm largest eigenvalues and the corresponding eigenfunctic
of 92 + k?(x4/2, 2). The fully discretized version corresponds to the computation ofithe
eigenvalues anth eigenvectors of the matrix in (18). This gives rise to

ki
D4+ - Vim = VinAm, (19)
5

where A, is them x m diagonal matrix of the largest eigenvalues, afidis then x m
matrix of corresponding eigenvectors. Originally the opera@endY are approximated
by n x n matrices and (n®) operations are required in each step. In the new approach,
look only at the images of these operators acting on therfirsigenfunctions, projected
into the subspace spanned by theseigenfunctions. More precisely, we seekrarx m
matrix &, such that

QOVm ~ Vm S)

Similarly, for the input of this stegxo, X1), the operatoQ); is related to am x m matrix
S.. However,S,, being the result of the calculation of the previous sbep x»), must be
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related to then eigenfunctions of the operat6f + «2 for x = x3/». But for the remaining
calculations of the step (fromy to Xg), we need am€m x m matrix for Q; related to the
eigenfunctions ax = Xy 5. If Vrgo"” is the matrix ofm eigenvectors ats,,, the relationship
we have is

QuV?? & VP9's,, (20)
where§ is the result of the previous step. We need to findrer m matrix S such that

Q1Vm ~ VS

For this purpose, we expand the eigenvectorgatby the eigenvectors &, and then
truncate the result. This leads to

VO~ Vi H.
Clearly, them x m matrix H is given by
H =V Voo,
Equation (20) is then approximated by
Q1VimH ~ VhH S,.
This gives rise to
S=HSH.
This is followed by the computation ¢¥;, Py, andW as in the full matrix method witiA
replaced byA,. The matriced;, Py, andW all have the smaller size x m. The step for
Qo is replaced by the step f&, with S =i+/AnW. Similar considerations apply to the
operatorY. We start withZ; satisfying
Ylvn(]old) ~ Vr;old)zl
and calculatez for Y satisfying
YoVm & VinZo.
The relationship betweer, andZ; is
Zo=HZiH (I + Ppe"™an(l + Py)~L,
whereP; and P; arem x m matrices used in the calculation &f for Q.
To summarize, we list the steps involved for marchi@gandY from x; to xp in the

truncated local eigenfunction expansion approach. The inputs are m&yiaad Z; cor-
responding to the projected images of the operafarandY; on the subspace spanned by
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the firstm eigenfunctions aks/,, and the outputs ar§ and Z, for operatorsQg and Yy
and the eigenfunctions ai»:

H =V Ve,
S=HSH?,

Pi={(VAmn+ 9 YivAn—9),
Py = gNVAnp,ghvan

W = (I — Po)(I + Pp)™?,
S) = i\/XmWa
Zo= HZiH X1 + P)ENYAn(l + Py~L.

5. FOURTH-ORDER LARGE STEP METHOD

The method developed in the previous sections is based on approximating the Helm
waveguide by a stepwise range-independent waveguide. In each step, the wave smun
is approximated by its value at the midpoint (still a functiorzfand an exact formula
for marching the DtN map step by step is then derived. When the waveguide has a
gradual range (i.ex) dependence, a large step size is possible. However, the range ster
is still limited by the variation of the waveguide in the range direction, since the stepw
approximation leads to only second-order accuracy. In this section, we improve the cap
of our large range step method by introducing a fourth-order method which still gives
exact solution for a range-independent region. Our new method relies on a fourth-c
method for linear evolution equations developed in [20].

Consider the following linear evolution equation

yx = AX)Y, (21)

wherex is the usual “time” variable andl is some operator acting on functions of som
transverse variable, sayFor a typical step fromy to x; = Xg + h, the midpoint exponential
method is

yi = NA(X1/2) Yo, (22)

whereyy is the given approximation of(xo), X1/2 = Xo + h/2, andy; gives a new approx-
imation for the solution ax;. That is,y; ~ y(X1), wherey(x,) is the exact solution of (21)
atx;. The method (22) is in general a second-order method, but it gives an exact soluti
A is x-independent on the st&Ro, X;). If the operatotA is skew-self-adjoint (the adjoint
operator is simply-.4), then the numerical solution, like the exact solution, preserves t
L2 norm, if proper boundary conditions are imposed. Namely,

/|y1|2d2=/|yo|2dz.

This is a desirable property, especially for the $climger equation, wherd = i[92 —



242 YA YAN LU

A fourth-order method for (21) which retains the good properties of the second-ort
midpoint exponential method is developed in [20]. It gives

h2 4 n 4 _h2 g
Y1 = eﬁA ehA+ﬂA e—ﬁA Yo, (23)

whereA, A’, andA” are all evaluated at the midpot» = Xo + h/2. The methods (22) and
(23) are useful for evolution equations with highly oscillatory solutions and slowly varyir
evolution operators. The step size is restricted by the variation of the evolution opera
but is not restricted by the variation of the solution. The fourth-order method gives mc
accurate solutions, without much increase of computational effort. For th@@ober
equation with a time-dependent potential, the fact that the derivatives of the operators
functions simplifies the first and third exponential operators to function multiplications.
For the Helmholtz equation (1) and the related Riccati equation (2) of the DN map, |
marching formulas (9), (11), (10), and (12) can also be derived based on (22)=lgt;
we write down the Helmholtz equation as the system

dfu [0 17fu
&M R O]M’ @y
whereB = /92 + k2(x, z), and apply method (22) to system (24). This leads to
0
{ul} =exp| h ) [UO], (25)
V1 | —Bi, O Vo

whereus, v1 andug, vg are the approximations ef andv at x; andxg, respectively, and
B1/2 =1/032 + k2(X1/2, 2). From the definition of the DtIN map, we have

v1 = QUg, vo = QoUo.

Plug the above relationships into (25); we could simplify the result and obtain (9), (11), &
(10) and the formula

ur = (I + RDEM®2(1 + Ro) *uo, (26)
which gives (12).

Because of its relevance to the fourth-order method later, we give a detailed derival
here. We start with the diagonalization of th& 2 operator matrix

o o=l il —ialls ]

and evaluate the matrix exponential by

ol 5 )L Wl s 2

Equation (25) then leads to

(PSP I P ) A | AN i Pl
iB]_/z —iB]_/z Q]_Ul - eﬁihBl/2 iB]_/z —iB]_/z Q()Uo '
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The inverse matrix above can be easily calculated,

PR |

The above two equations give rise to
[l —iB13Qu]ur = €"2[I —iB}Qo]uo, 27)
e"Bv2[I +iB15Q1]ur = [I +iBy3Qo]Uo. (28)
Therefore,
[1 +iB5Qo] [I —iB;5Qo] " = €M [1 +iB5Qu][I —iB;5Q:] "eM®we.
Since
[ +iByAQu)[1 —iBy3Qu] ™ = [I —iBsQu] [I +iBy5Q4]
[iBiz+ Qi ‘[~iBy2+ Qu] = Ry,
[l —iBy5Qo] [ +iB;5Q0]
= [iB12+ Qo] "[~iBy2 + Qo] = Ro,

[l +iBy5Qo][1 —iB3Qo] ™

we obtainRy = "Bz R;&"Bvz and Eq. (10) forQo.
With R; and R, defined above, we have

| + Ry =1 +[iB12+ Qi YiBy2 — Q1] = 2i[iBy2 + Q1] By

Similarly,

~ 1 .
(I + R~ = 2-By3liByj2 + Qol.

From (27), we have
[iB1/2 + QiJus = €"B2[iBy2 + Qo]uo.
Therefore,
Uy = [iBa2 + Q1] *¢"®2[iB1)2 + Qo]uo
= (I + R B 36"®2By5(1 + Ro) "o
= (I + RyEM2(I + Ry)tuo.

This leads to Eg. (26) and thus Eq. (12).
For the fourth-order method (23), we obtain

Uq _ 0 I l[U0:|
LJ =H exp(h [—822 2 5(’(2)“ 0] )H e (29)
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wherex? and its first and second derivatives are all evaluated at the midpginaind

Hee 0 0
= exX ) .
\L-Ewds o

Itis easy to see that

If we let
~ h2 9«2
L= — forj =0,1
Q; =Qj 12 9% |, J
1/2
and
h2 922
B — 82 2 _
v \/Z+[K +248X2:|x—x ’
1/2
we obtain

Uq _ 0 | Up
{Q} B ex"(“[—éi/z OD[Q} 59

Comparing the above and (25), it is clear that the fourth-order formulas for mar€hing
andY should be identical to the second-order ones ((9), (11), (10), and (12)), after
substitution

Qo — Qo Q1 — Qy, Bi/2 — By

To summarize, our fourth-order method proceeds from the g@gry; at x; to Qo, Yo
at xo = x3 — h through the following steps:

1. CalculateQ, andBy; by

~ h? 9x2
Q=Q1+ 12 9%

’

X=X1/2

~ h2 922

Bijp=,/02 24 — .
N
=X1/2

2. CalculateR; by
Ry = [iBio+ Q4 - [—iBio+ Q4.
3. CalculateRy by

Ro = "Bz Ry e,
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4. CalculateQ, andY, by

Qo =iBupll — Rol[l + Ro] ™%,

Yo = Ya(l + Rye"Bue(l + Ry)~L.
5. CalculateQq by

~ h2 9«2
Qo= Qp— 12 9%

X=X1,2

Therefore, the fourth-order method is achieved with very little extra work (in the first
last steps). The difference with the second-order method is adding and subtracting
derivatives ofc? to or from given operators.

For a direct numerical implementation based on approximating the operatars by
matrices, whera is the number of points used to discretizéhe necessary modification for
the fourth-order method is minimal. We start with calculating the eigenvalue decomposi
of the matrix corresponding @F + «2 + (h?/24)(«?)xx. That is,

S
Da + =VAVT,
S
wheres; = k2(X1/2, Zj) + (W?/248) (k?)xx(X1/2, Zj), andV and A are the matrices of eigen-

vectors and eigenvalues, respectively. The matrix representatio@s, @@, and Q,, Q;
are related to each other by the following diagonal matrix:

h?
F= 1 diag[(kc*)x(Xe2. 20, - - . (KD)x(Xyj2, Zn)] .
Therefore, afte andA are calculated, we proceed as follows:

Qi=Qi+F,
S=VvTQ,Vv,
PL=(vVA+9 VA -9,
Py = eihﬁpleihxFA’
W = (I — Py)(l +Py)~*,
Qo =iVVAWVT,
Yo = YoVl + P)EMVA(l + Py) VT,
Qo= Qo—F.

For the implementation based on the truncated local eigenfunction expansion, onl
first m eigenvalues and eigenvectors are needed,

il
D4+ Vi = VmAm,
S
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whereAn, is them x m diagonal matrix of then largest eigenvalues and, is then x m
matrix of the corresponding eigenvectors. Similarly, in the previoustepz), we have
obtained a matrix ah eigenvectors, denoted M{°'?, atxs . Since the operato®; andQo

are represented by tine x m matricesSandS, for the subspace spanned by the columns o
Vi, itis necessary to calculate a similar matrix representation for the fun@fgm?2) ().

For the diagonal matri¥ given above, we look for am x m matrix G, such that

FVm &~ VinG.

This leads taG = V] F Vi Therefore, the operatof3; and QO are represented b+ G
and§ — G, respectively. In summary, we have

H = Vv,
S=HSH™,
G = ViF Vn,
S=S+G,

PL=(vAn+ 9 (VAn-9),

Py = €hVAnp,ghvan,

W= (I —Po)(l + Py,

S =ivVAmW,

9=%-G,

Zo=HZH (1 + Pe™Van(l + Pyt

6. NUMERICAL EXAMPLES

To demonstrate the large range step capacity of our method, we consider the follow
example where is given by

K2(X,2) = kG [1+ 0.05e~20/L 0.5 sinf(rz)].

We chooserp = 10 andL = 10. The second derivative inis discretized by a fourth-order
finite difference method with = 30.
At x =0, we impose the following starting field:

7
Uo(2) = Zsin(mj 20) sin(m;2)/y/«§ —mi  form; = (j —1/2)w, 2o = 0.65.
=1

The wave field ak = L is obtained byu(L, z) =Y (0)ug(2), whereY (0) is calculated by
solving Q andY from x = L to x = 0. Since the range dependence of the waveguide is qui
weak, the transmitted wave is not very difficult to calculate. We first use a small range s
sizeh=1/128 to calculate a very accurate solution for reference. After that, we calcul:
the solution with much larger range steps and then compare them with the more acct
reference solution. In Fig. 1, we plot the approximate solutiong(bf, z) for h=1 and
h=1/128. We conclude that reasonably good solutions are already obtainddwithin
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FIG.1. Comparison ofi(L, z) forh=1 andh=1/128.

the following table, we list the relative errors of the numerical solutiong bf z) obtained
by our fourth-order method with different choices of the range step size. The relative err
calculated using the Euclidean norm for the vector abttiéferentz values (corresponding
to theL? norm of functions of):

Step size h: 1 2 1/4 1/8 1/16

Relative error 10 Q0049 83E-6 26E-7 16E-8

In contrast, the relative errors of the second-order method are
1.04E-4 2.51E-5 6.14E-6

forh=1/4,1/8, and 716, respectively.

Since the waveguide has a very gradual range dependence, the back-scattered wa
quite weak. Based on the DtN mapat 0, i.e.,Q(0), we find the reflection operat®(0)
and then multiplyR(0) on different incident waves to find their corresponding reflecte
waves. As an example, we consider the back-scattering of the incident wave correspol
to the third propagating mode:

u®(0, 2) = sin(2.572).

InFig. 2, the reflected wave calculated by the fourth-order methodhwithi/8 is compared
with a much more accurate solution obtained with: 1/128. Although the magnitude is
only around 10%, a reasonably accurate solution is already obtained tvithl/8. In
contrast, we observe from Fig. 3 that the numerical solution based on the second-
method has a much larger error.
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0
-0.1F -0.1
-0.21 ~0.2
=-0.3p =03
-0.41- -0.4
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-1 -0.5 0 05 1 4

x 10 x10°

FIG. 3. The reflected wave calculated by the second-order methochwitlh/8 and the fourth-order method
with h=1/128.
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7. CONCLUSION

We have developed large range step methods for Helmholtz waveguides with a particu
large range length scale and a slow variation in the range direction. As in [21], the one-
re-formulation of the Helmholtz equation in terms of the DtN nfa@and the fundamental
solution operatoY is used. Such a one-way re-formulation is useful when the range len
scale is much larger than the transverse length scale of the waveguide, since num
methods developed based on these one-way re-formulations have memory requirel
independent of the total range distance and the computation time is linearly related ft
same distance. We notice that for many practical applications, medium properties o
waveguide have a very gradual variation with the range variable, i.e., only very small cha
in a typical wavelength. Finite difference and finite element methods fail to take advan
of this feature and a small step size in the range is required even when the wavec
is range-independent. Typically, a few points are always required by these methoc
each wavelength to resolve the highly oscillatory wave field. On the other hand, wher
waveguide is range-independent, the equation is separable and its exact solution at any
can be written down in terms of the eigenfunctions of the transverse operator. It is ©
natural that for nearly separable (slowly varying with range) waveguides, one approxim
the waveguide by a piecewise range-independent waveguide and patches the exact solt
each piece together to obtain an approximate solution for the whole waveguide. The cot
mode method [8] uses this approach by solving a global linear system for the coeffici
representing the exact solutions in each piece. Our method developed in Sections 3and
uses the approximation of a piecewise range-independent waveguide. While the co
mode method uses the local eigenfunction expansion to write down the exact solutio
each piece, we use the same expansion to reduce the op&padoidY to their images in
the eigenfunction space. Since the waveguide supports only a finite number of propag
modes, good approximation is possible when the eigenfunction expansion is truncated
a relatively small number of terms. Because of the one-way re-formulation used in
methods, the operators are marched in the range as an initial value problem, avoidin
large linear system appearing in the coupled mode method.

The drawback of the coupled mode method [8] and our method in Sections 3and 4 i
low order of accuracy associated with the approximation of a range-dependent wavec
by a piecewise range-independent one. Such an approximation typically leads to a se
order of accuracy, so the range step size is still limited by the variation of the waveguide ir
range variable. Our method developed in Section 5 is a fourth-order method that pres:
the good properties of the second-order method. Namely, for a range-independent
the fourth-order formulas for matchin@ andY are still exact. This improved method
is related to a fourth-order conservative exponential method developed in [20] for hic
oscillatory evolution equations such as the Scimger equation. Finally, our fourth-order
method requires very little extra work compared with the original second-order mett
The advantage of this method is verified by numerical experiments in Section 6.
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